Theoretical Investigations of the Local Structure and the EPR Parameters of Mn⁴⁺ in LiF:U:Mn Crystal

Shao-Yi Wu^{a,b}, Wang-He Wei^a, and Hui-Ning Dong^{b,c}

- ^a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- ^c College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

Reprint requests to S.-Y. Wu; E-mail: wushaoyi@netease.com

Z. Naturforsch. **58a**, 672 – 676 (2003); received September 10, 2003

The local structure and the EPR parameters (zero-field splitting D, g factors g_{\parallel} and g_{\perp} and hyperfine structure constants A_{\parallel} and A_{\perp}) of Mn⁴⁺ in LiF:U:Mn crystal have theoretically been investigated by using the perturbation formulas of the EPR parameters for a 3d³ ion in trigonally distorted octahedra. In this trigonal Mn⁴⁺ center, three U⁶⁺ ions locate on (1,1,0), (1,0,1) and (0,1,1) sites, each surrounded by six O²⁻ ions. Thus, the studied system is characterized as the Mn⁴⁺ associated with one host F⁻ triangle, one O²⁻ triangle and an additional equivalent F'- triangle containing the three U⁶⁺ ions, i.e. an [MnF₃O₃F'₃]⁸⁻ cluster. The central Mn⁴⁺ impurity is found to shift towards the oxygen triangle along the C_3 (or [111]) axis by an amount ΔZ (≈ 0.29 Å) due to the strong electrostatic attraction between the Mn⁴⁺ and the oxygen triangle (and also the additional equivalent F'- triangle), which increases the trigonal distortion of the Mn⁴⁺ center considerably. The calculated EPR parameters based on the above displacement ΔZ agree reasonably with the observed values.

Key words: Defect Structure; Electron Paramagnetic Resonance (EPR); Crystal-field Theory; Mn⁴⁺; LiF.